Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Article in English | MEDLINE | ID: covidwho-2197167

ABSTRACT

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Subject(s)
Influenza A virus/immunology , Macrophages/immunology , Orthomyxoviridae Infections/drug therapy , Succinates/pharmacology , A549 Cells , Animals , Carboxy-Lyases/deficiency , Carboxy-Lyases/immunology , Cytokines/genetics , Cytokines/immunology , Humans , Macrophages/virology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , THP-1 Cells
3.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: covidwho-1934093

ABSTRACT

Tissue injury and inflammatory response trigger the development of fibrosis in various diseases. It has been recognized that both innate and adaptive immune cells are important players with multifaceted functions in fibrogenesis. The activated immune cells produce various cytokines, modulate the differentiation and functions of myofibroblasts via diverse molecular mechanisms, and regulate fibrotic development. The immune cells exhibit differential functions during different stages of fibrotic diseases. In this review, we summarized recent advances in understanding the roles of immune cells in regulating fibrotic development and immune-based therapies in different disorders and discuss the underlying molecular mechanisms with a focus on mTOR and JAK-STAT signaling pathways.


Subject(s)
Adaptive Immunity , Fibrosis/immunology , Immunity, Innate , Signal Transduction/immunology , Animals , B-Lymphocytes/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Fibrosis/pathology , Fibrosis/therapy , Humans , Lymphopoiesis/immunology , Macrophages/immunology , Myofibroblasts/metabolism , Neutrophils/immunology , T-Lymphocytes/immunology
4.
Int Immunopharmacol ; 108: 108847, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1851320

ABSTRACT

BACKGROUND: Different quickly-developed vaccines are introduced against COVID-19 with inconclusive results especially against some recent variants. Eventually, somewhere COVID-19 cases decline and in some countries it revived with some new mutant-variants (i.e. D614G, Delta and Omicron). OBJECTIVES: Proposing a universal vaccination strategy by screening globally-conserved SARS-CoV-2 spike-epitopes. METHODS: Presently, several conserved (186-countries) sequences including multiple-variants (ClustalX2) epitopic-regions (SVMTriP and IEDB) and in-silico mutants of SARS-CoV-2 spike-protein-fragments (Cut1-4) were screened for their stability against proteases, antigenicity (VaxiJen V2.0 and for glycosylation effects NetOGlyc-NetNGlyc), MHCI/II reactivity (IEDB-TOOLS) and CD4+ responses by molecular-docking (Haddock2.4/PatchDock). We also examined Molecular-Dynamic-Simulation (myPresto verson-5) of MHC-II 3LQZ with 3-Cuts and T-cell 2-molecules (1KGC/4JRX) with SM3-Cut. The MD-simulation was run with 5000-cycles after 300 k-heating/1-atm pressure adjustment for the system-equilibration. Finally, 1000 fs production was run. RESULTS: The cut4-mutant (SRLFRKSNLKPFERD) showed the highest combined-score 48.23548 and Immunogenicity-Score of 92.0887. The core-sequence SRLFRKSNL showed the highest Median-Percentile-Rank (7-HLA-allele) of 19. CD4+ immunogenicity also confirms the representation of the CUT4TM2 epitope SRLFRKSNL by MHC Class II. The epitope YNYKYRLFR from CUT4 showed an IC50 of ∼30 nM with allele HLA-DRB1*11:01 and HLA-DRB5*01:01 with plenty H-bonding. Cut4 double-mutants strongly interact with the exposed T-cell surface and are facilitated by its receptors. The MD-simulation data suggest that TM2 has a maximum RMSD value of 1.7 Å, DM2 is at 1.55 Å and SM3 is at 1.5 Å. These variations correspond to structural adjustments and involve binding/unbinding chemical interactions. The RMSD plot shows that 1KGC T-cell molecule is at 2.2 Å and the 4JRX is at 1.2 Å, which increases with the simulation time. CONCLUSIONS: Screening of conserved SARS-CoV-2 spike fragments helps to find the most stable antigenic-determinant which with some mutations showed better antigenicity. Further studies are necessary to develop global vaccination strategies against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Epitopes, T-Lymphocyte , Macrophages , Spike Glycoprotein, Coronavirus , Amino Acid Sequence , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Macrophages/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vaccination
5.
J Virol ; 96(7): e0005722, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1759284

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Subject(s)
COVID-19 Drug Treatment , Heparin/analogs & derivatives , Cell Line , Cytokines/metabolism , Fenofibrate , Gene Knockdown Techniques , Glucuronidase/genetics , Glucuronidase/metabolism , Heparin/therapeutic use , Humans , Immunity/drug effects , Inflammation , Macrophages/drug effects , Macrophages/immunology , NF-kappa B , SARS-CoV-2
6.
Immunity ; 55(3): 382-384, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1747889

ABSTRACT

Macrophage activation is essential for effective immunity to infection but can also contribute to disease through incompletely understood mechanisms. In this issue of Immunity, Simpson et al. reveal that death of activated macrophages integrates extrinsic and intrinsic pathways of apoptosis that contribute to damaging host responses.


Subject(s)
Interferon-gamma , Macrophage Activation , Apoptosis , Caspase 8/metabolism , Cell Death , Interferon-gamma/metabolism , Ligands , Macrophages/immunology
7.
Front Immunol ; 13: 838328, 2022.
Article in English | MEDLINE | ID: covidwho-1731785

ABSTRACT

Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer's patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis.


Subject(s)
Atrophy/immunology , COVID-19/immunology , Germinal Center/immunology , Intestinal Mucosa/immunology , Peyer's Patches/immunology , B-Lymphocytes/immunology , Humans , Lymphoid Tissue/immunology , Macrophages/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology
8.
Nat Rev Immunol ; 22(2): 74-75, 2022 02.
Article in English | MEDLINE | ID: covidwho-1713174
9.
Front Immunol ; 13: 842535, 2022.
Article in English | MEDLINE | ID: covidwho-1702591

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are generated under biological stress such as cancer, inflammatory tissue damage, and viral infection. In recent years, with occurrence of global infectious diseases, new discovery on MDSCs functions has been significantly expanded during viral infection and COVID-19. For a successful viral infection, pathogens viruses develop immune evasion strategies to avoid immune recognition. Numerous viruses induce the differentiation and expansion of MDSCs in order to suppress host immune responses including natural killer cells, antigen presenting cells, and T-cells. Moreover, MDSCs play an important role in regulation of immunopathogenesis by balancing viral infection and tissue damage. In this review article, we describe the overview of immunomodulation and genetic regulation of MDSCs during viral infection in the animal model and human studies. In addition, we include up-to-date review of role of MDSCs in SARS-CoV-2 infection and COVID-19. Finally, we discuss potential therapeutics targeting MDSCs.


Subject(s)
Immunomodulation/immunology , Macrophages/immunology , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Immune Evasion/immunology , Macrophages/cytology , Monocytes/cytology , Monocytes/immunology , Myeloid-Derived Suppressor Cells/cytology
10.
Front Immunol ; 13: 780839, 2022.
Article in English | MEDLINE | ID: covidwho-1686482

ABSTRACT

Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.


Subject(s)
Infections/immunology , Infections/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Animals , COVID-19/immunology , Humans , Immunity, Innate/immunology , SARS-CoV-2
11.
Front Immunol ; 12: 828115, 2021.
Article in English | MEDLINE | ID: covidwho-1680008

ABSTRACT

Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion channel expressed by various macrophage populations. Recent reports have characterized the role of TRPV4 in shaping the activity and phenotype of macrophages to influence the innate immune response to pathogen exposure and inflammation. TRPV4 has been studied extensively in the context of inflammation and inflammatory pain. Although TRPV4 activity has been generally described as pro-inflammatory, emerging evidence suggests a more complex role where this channel may also contribute to anti-inflammatory activities. However, detailed understanding of how TRPV4 may influence the initiation, maintenance, and resolution of inflammatory disease remains limited. This review highlights recent insights into the cellular processes through which TRPV4 contributes to pathological conditions and immune processes, with a focus on macrophage biology. The potential use of high-throughput and omics methods as an unbiased approach for studying the functional outcomes of TRPV4 activation is also discussed.


Subject(s)
Gene Expression Regulation , Macrophages/immunology , Macrophages/metabolism , Signal Transduction , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Animals , Carrier Proteins , Disease Management , Disease Susceptibility , Energy Metabolism , Humans , Ligands , Macrophage Activation/genetics , Macrophage Activation/immunology , Mechanotransduction, Cellular , Molecular Targeted Therapy , Protein Binding
12.
Nat Commun ; 13(1): 679, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671560

ABSTRACT

Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.


Subject(s)
COVID-19/immunology , Interferons/pharmacology , Myeloid Cells/immunology , SARS-CoV-2/drug effects , Animals , Antiviral Agents , Bronchoalveolar Lavage , Disease Models, Animal , Humans , Immunity, Innate , Inflammation , Interferon Type I/genetics , Interferon Type I/pharmacology , Interferons/genetics , Lung/immunology , Lung/pathology , Macaca mulatta , Macrophages/immunology , T-Lymphocytes/immunology
13.
Oxid Med Cell Longev ; 2022: 2523066, 2022.
Article in English | MEDLINE | ID: covidwho-1662340

ABSTRACT

Pneumoconiosis is one of the most common occupational diseases in the world, and specific treatment methods of pneumoconiosis are lacking at present, so it carries great social and economic burdens. Pneumoconiosis, coronavirus disease 2019, and idiopathic pulmonary fibrosis all have similar typical pathological changes-pulmonary fibrosis. Pulmonary fibrosis is a chronic lung disease characterized by excessive deposition of the extracellular matrix and remodeling of the lung tissue structure. Clarifying the pathogenesis of pneumoconiosis plays an important guiding role in its treatment. The occurrence and development of pneumoconiosis are accompanied by epigenetic factors (e.g., DNA methylation and noncoding RNA) changes, which in turn can promote or inhibit the process of pneumoconiosis. Here, we summarize epigenetic changes and functions in the several kinds of evidence classification (epidemiological investigation, in vivo, and in vitro experiments) and main types of cells (macrophages, fibroblasts, and alveolar epithelial cells) to provide some clues for finding specific therapeutic targets for pneumoconiosis and even for pulmonary fibrosis.


Subject(s)
Epigenesis, Genetic , Pneumoconiosis/genetics , COVID-19/genetics , COVID-19/pathology , DNA Methylation , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Pneumoconiosis/pathology , RNA, Untranslated/metabolism , SARS-CoV-2/isolation & purification
14.
Nature ; 603(7899): 145-151, 2022 03.
Article in English | MEDLINE | ID: covidwho-1631700

ABSTRACT

COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3-5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5-17. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Interferon Type I/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , SARS-CoV-2/immunology , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , DNA, Mitochondrial/metabolism , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Female , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Macrophages/immunology , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/virology , SARS-CoV-2/pathogenicity , Signal Transduction , Skin/immunology , Skin/metabolism , Skin/pathology
15.
Chem Commun (Camb) ; 58(13): 2120-2123, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1639577

ABSTRACT

The coronavirus 2019 (COVID-19) pandemic is causing serious impacts in the world, and safe and effective vaccines and medicines are the best methods to combat the disease. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in interacting with the angiotensin-converting enzyme 2 (ACE2) receptor, and is regarded as an important target of vaccines. Herein, we constructed the adjuvant-protein conjugate Pam3CSK4-RBD as a vaccine candidate, in which the N-terminal of the RBD was site-selectively oxidized by transamination and conjugated with the TLR1/2 agonist Pam3CSK4. This demonstrated that the conjugation of Pam3CSK4 significantly enhanced the anti-RBD antibody response and cellular response. In addition, sera from the Pam3CSK4-RBD immunized group efficiently inhibited the binding of the RBD to ACE2 and protected cells from SARS-CoV-2 and four variants of concern (alpha, beta, gamma and delta), indicating that this adjuvant strategy could be one of the effective means for protein vaccine development.


Subject(s)
COVID-19/prevention & control , Lipopeptides/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Conjugate/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibody Formation , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Protein Binding , Protein Domains/immunology , RAW 264.7 Cells , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/chemistry
16.
EBioMedicine ; 75: 103803, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587923

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) pandemic has been a great threat to global public health since 2020. Although the advance on vaccine development has been largely achieved, a strategy to alleviate immune overactivation in severe COVID-19 patients is still needed. The NLRP3 inflammasome is activated upon SARS-CoV-2 infection and associated with COVID-19 severity. However, the processes by which the NLRP3 inflammasome is involved in COVID-19 disease remain unclear. METHODS: We infected THP-1 derived macrophages, NLRP3 knockout mice, and human ACE2 transgenic mice with live SARS-CoV-2 in Biosafety Level 3 (BSL-3) laboratory. We performed quantitative real-time PCR for targeted viral or host genes from SARS-CoV-2 infected mouse tissues, conducted histological or immunofluorescence analysis in SARS-CoV-2 infected mouse tissues. We also injected intranasally AAV-hACE2 or intraperitoneally NLRP3 inflammasome inhibitor MCC950 before SARS-CoV-2 infection in mice as indicated. FINDINGS: We have provided multiple lines of evidence that the NLRP3 inflammasome plays an important role in the host immune response to SARS-CoV-2 invasion of the lungs. Inhibition of the NLRP3 inflammasome attenuated the release of COVID-19 related pro-inflammatory cytokines in cell cultures and mice. The severe pathology induced by SARS-CoV-2 in lung tissues was reduced in Nlrp3-/- mice compared to wild-type C57BL/6 mice. Finally, specific inhibition of the NLRP3 inflammasome by MCC950 alleviated excessive lung inflammation and thus COVID-19 like pathology in human ACE2 transgenic mice. INTERPRETATION: Inflammatory activation induced by SARS-CoV-2 is an important stimulator of COVID-19 related immunopathology. Targeting the NLRP3 inflammasome is a promising immune intervention against severe COVID-19 disease. FUNDING: This work was supported by grants from the Bureau of Frontier Sciences and Education, CAS (grant no. QYZDJ-SSW-SMC005 to Y.G.Y.), the key project of the CAS "Light of West China" Program (to D.Y.) and Yunnan Province (202001AS070023 to D.Y.).


Subject(s)
COVID-19 , Lung , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Disease Models, Animal , Humans , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/immunology , Macrophages/pathology , Macrophages/virology , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , SARS-CoV-2/genetics , THP-1 Cells
18.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1559206

ABSTRACT

Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, "multi-omics" immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Cytokines/blood , Sepsis/pathology , Anti-Inflammatory Agents/therapeutic use , Bacteria/immunology , Bacterial Infections/pathology , Cytokines/metabolism , Humans , Inflammation/pathology , Macrophages/immunology , SARS-CoV-2/immunology , Sepsis/microbiology
19.
J Med Virol ; 93(12): 6519-6524, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544297

ABSTRACT

The COVID-19 pandemic, which has ravaged our world for more than a year, still shapes our agenda with a scale of intensity that fluctuates over time. In our study, we aimed to determine the correlation between serum migration inhibitory factor (MIF) level and disease severity in COVID-19 with different prognoses. Between 15 October 2020 and 20 January 2021, 110 patients over the age of 18 who were diagnosed with COVID-19 and 40 volunteer healthcare personnel were included in our study. MIF levels were measured by enzyme-linked immunosorbent assay. In the comparison of serum MIF values in the patient and control group, it was observed that the MIF level was significantly higher in patients with both moderate and severe COVID-19 levels compared to the control group (p = 0.001, 0.001). In the comparison of serum MIF values of moderate to severe COVID-19 patients, it was observed that MIF level was higher in severe patients (p = 0.001). In the receiver operating characteristic curve analysis performed to differentiate between severe and moderate COVID-19 patients with MIF levels, the area under the curve was observed as 0.78. When the cutoff value of the MIF level was taken as 4.455 ng/ml, the sensitivity was 83% and the specificity was 62%. Failure to adequately balance the pro-inflammatory cytokines synthesized in COVID-19 with anti-inflammatory effect is the most important reason for the aggravation of the disease course. Playing a role in pro-inflammatory cytokine synthesis, MIF can provide important information about the disease prognosis in the early period.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/blood , Intramolecular Oxidoreductases/blood , Macrophage Migration-Inhibitory Factors/blood , Macrophages/immunology , SARS-CoV-2/immunology , Case-Control Studies , Cytokine Release Syndrome/pathology , Disease Progression , Enzyme-Linked Immunosorbent Assay , Female , Humans , Macrophage Activation/immunology , Male , Middle Aged , Prognosis , Severity of Illness Index
20.
Front Immunol ; 12: 767319, 2021.
Article in English | MEDLINE | ID: covidwho-1538373

ABSTRACT

The importance of innate immune cells to sense and respond to their physical environment is becoming increasingly recognized. Innate immune cells (e.g. macrophages and neutrophils) are able to receive mechanical signals through several mechanisms. In this review, we discuss the role of mechanosensitive ion channels, such as Piezo1 and transient receptor potential vanilloid 4 (TRPV4), and cell adhesion molecules, such as integrins, selectins, and cadherins in biology and human disease. Furthermore, we explain that these mechanical stimuli activate intracellular signaling pathways, such as MAPK (p38, JNK), YAP/TAZ, EDN1, NF-kB, and HIF-1α, to induce protein conformation changes and modulate gene expression to drive cellular function. Understanding the mechanisms by which immune cells interpret mechanosensitive information presents potential targets to treat human disease. Important areas of future study in this area include autoimmune, allergic, infectious, and malignant conditions.


Subject(s)
Immunity, Innate/immunology , Macrophages/immunology , Mechanotransduction, Cellular/immunology , Neutrophils/immunology , Signal Transduction/immunology , Animals , Cytokines/immunology , Cytokines/metabolism , Humans , Ion Channels/immunology , Ion Channels/metabolism , Macrophages/metabolism , Neutrophils/metabolism , TRPV Cation Channels/immunology , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL